Document Type


Publication Date



Institute of Electrical and Electronic Engineers

Source Publication

IEEE Transactions on Industrial Electronics

Source ISSN


Original Item ID

DOI: 10.1109/TIE.2021.3065617


An online approach for diagnosing high-resistance connection (HRC) faults in five-phase permanent magnet synchronous motor drives is presented in this article. The development of this approach is based on a so-called “magnetic field pendulous oscillation (MFPO)” technique and symmetrical components method. Under HRC fault condition, a “swing-like” MFPO phenomenon is observed compared to the healthy condition. Furthermore, with the extracted current features in symmetrical components domain, different HRC fault types are successfully identified and distinguished. These fault types include single-phase faults, e.g., HRC fault in phase-A; two-phase nonadjacent faults, e.g., HRC fault in phase-A&C; and two-phase adjacent faults, e.g., HRC fault in phase-A&B. Meanwhile, the localization of the faulty phase/phases is also accomplished, and the fault severity is estimated. In this approach, only sensing of the phase currents is needed. Hence, the implementation cost is very low since the sensory data of the currents are typically already available in the closed-loop vector-controlled drives for control purpose and no additional sensors or related signal conditioning circuits are required. The effectiveness of the presented diagnostic approach is verified by simulations and experimental results.


Accepted version. IEEE Transactions on Industrial Electronics, Vol 69, No. 3 (March 2022): 2288-2299. DOI. © 2022 Institute of Electrical and Electronic Engineers (IEEE). Used with permission.

demerdash_15513acc.docx (568 kB)
ADA Accessible Version