Title
Relative growth rates of vines and shrubs of western poison oak, Toxicodendron diversilobum (Anacardiaceae)
Document Type
Article
Publication Date
1991
Volume Number
78
Source Publication
American Journal of Botany
Abstract
Because of the different mechanical constraints on vines and self-supporting plants, vines are thought to differ from trees and shrubs in a variety of their growth characteristics. I tested the hypotheses that vines grow faster than shrubs and that supported shoots have delayed leaf expansion relative to stem elongation, using western poison oak, Toxicodendron diversilobum (T. and G.) Greene, a plant that grows as a vine when externally supported but otherwise as a shrub. In the field, supported shoots (vines) had significantly higher aboveground biomass relative growth rates than did their paired unsupported shoots (shrubs) growing nearby. This was not due to differences in leaf phenology, but may have resulted from vines growing into more favorable habitats for growth. In contrast, whereas 2-yr-old cloned plants in a common garden differed in their stem and internode lengths, they had the same aboveground dry weight, proportion of dry weight that was leaf, and relative rate of increase in primary stem length whether grown with stakes (vines) or without stakes (shrubs). These results suggest that there is no inherent requirement of vines to grow faster than shrubs. As hypothesiszed, leaf elongation was more delayed relative to stem elongation in staked than unstaked individuals in 19 paired plants (each pair cloned from a different source plant). Thus, physical cues resulting from the presence of support can alter the plant's spatial and temporal patterns of development, but do not necessarily dictate the quantity of biomass that will be produced.