Title
Maternal environmental effects on the phenotypic responses of the twining vine Ipomoea purpurea to support availability.
Document Type
Article
Publication Date
2002
Volume Number
99
Source Publication
Oikos
Abstract
The presence of physical support elicits a number of morphological changes in the shoot of the common morning glory Ipomoea purpurea, including a shortening of internodes and petioles and a thickening of the main stem. Working with experimentally supported and non-supported plants of I. purpurea, I tested the existence of maternal environmental effects of physical support in this twining vine. I evaluated whether the offspring of supported plants differed from the offspring of non-supported plants in a number of morphological and reproductive characters. Stem diameter was the only shoot trait that showed a significant effect of the maternal environment (support). The stems of the progeny of supported mother plants were thicker than the stems of the progeny of non-supported mother plants. This was true for both supported and non-supported progeny. Stem diameter, however, was not significantly related to plant fitness (seed number) in supported or non-supported progeny plants. The maternal environment did not affect the magnitude of the phenotypic responses to support of shoot traits in the progeny plants. There were no maternal environmental effects of physical support on the proportion of flowering plants at week 10 in both non-supported and supported progeny. Likewise, the presence of physical support in the maternal environment did not affect reproductive traits (seed number, seed size, percentage of reproductive biomass) in supported and non-supported progeny plants. Finally, the relationship between seed size and seed number was affected by the maternal support environment. The progeny of supported mother plants showed a significantly negative association (trade-off) between seed size and number, whereas such a trade-off was not observed in the progeny of non-supported plants. This was true for both supported and non-supported progeny.