Document Type
Article
Language
eng
Publication Date
4-2005
Publisher
Elsevier
Source Publication
Automatica
Source ISSN
0005-1098
Abstract
In solving pattern recognition problems, many classification methods, such as the nearest-neighbor (NN) rule, need to determine prototypes from a training set. To improve the performance of these classifiers in finding an efficient set of prototypes, this paper introduces a training sample sequence planning method. In particular, by estimating the relative nearness of the training samples to the decision boundary, the approach proposed here incrementally increases the number of prototypes until the desired classification accuracy has been reached. This approach has been tested with a NN classification method and a neural network training approach. Studies based on both artificial and real data demonstrate that higher classification accuracy can be achieved with fewer prototypes.
Recommended Citation
Yen, Chen-Wen; Young, Chieh-Neng; and Nagurka, Mark L., "A Training Sample Sequence Planning Method for Pattern Recognition Problems" (2005). Mechanical Engineering Faculty Research and Publications. 152.
https://epublications.marquette.edu/mechengin_fac/152
Comments
Accepted version. Automatica, Vol. 41, No. 4 (April 2005): 575-581. DOI. © 2004 Elsevier Ltd. Used with permission.