Document Type

Article

Language

eng

Publication Date

3-2018

Publisher

Elsevier

Source Publication

Fuel Processing Technology

Source ISSN

0378-3820

Abstract

An accurate and computationally efficient model for the vaporization of many tar species during coal particle pyrolysis has been developed. Like previous models, the molecular fragments generated by thermal decomposition are partitioned into liquid metaplast, which remains in the particle, and vapor, which escapes as tar, using a vapor-liquid equilibrium(VLE) sub-model. Multicomponent VLE is formulated as a rate-based process, which results in an ordinary differential equation (ODE) for every species. To reduce the computational expense of solving many ODEs, the model treats tar and metaplast species as a continuous distribution of molecular weight. To improve upon the accuracy of previous continuous thermodynamic approaches for pyrolysis, the direct quadrature method of moments (DQMoM) is proposed to solve for the evolving distributions without assuming any functional form. An inexpensive delumping procedure is also utilized to recover the time-dependent mole fractions and fluxes for every discrete species. The model is well-suited for coal-to-chemicals processes, and any application which requires information on a range of tar species. Using a modified CPD model as the basis for implementation of the VLE submodel, agreement between the full discrete model and DQMoM with delumping is excellent, with substantial computational savings.

Comments

Accepted version. Fuel Processing Technology, Vol. 171 (March 2018): 248-257. DOI. © 2018 Elsevier B.V. Used with permission.

Share

COinS