Optimal Trajectory Planning of Robotic Manipulators via Quasi-Linearization and State Parametrization
Document Type
Conference Proceeding
Language
eng
Publication Date
5-14-1989
Publisher
Institute of Electrical and Electronic Engineers (IEEE)
Source Publication
Proceedings, 1989 International Conference on Robotics and Automation
Source ISSN
0818619384
Abstract
A numerical algorithm has been developed to solve the problem of optimal control of robotic manipulators. A quasi-linearization method is used to convert a nonlinear optimal control problem into a sequence of LQ (linear quadratic) problems, which are solved by an efficient Fourier-based state parameterization approach. The update laws for the nominal trajectory ensure satisfaction of the terminal conditions. In contrast to dynamic-programming-based methods, the proposed approach does not demand extensive computer storage requirements and thus is capable of achieving optimality without limiting the degrees of freedom of the trajectory. Compared to nonlinear-programming-based methods, the approach offers significant advantages in computational efficiency. Compared to calculus-of-variations-based methods, the approach eliminates the requirement of solving a two-point boundary-value problem and therefore is more robust and efficient.
Recommended Citation
Yen, Vincent and Nagurka, Mark L., "Optimal Trajectory Planning of Robotic Manipulators via Quasi-Linearization and State Parametrization" (1989). Mechanical Engineering Faculty Research and Publications. 188.
https://epublications.marquette.edu/mechengin_fac/188
Comments
Published as a part of Proceedings, 1989 International Conference on Robotics and Automation (May 14-19, 1989). DOI.
Mark L. Nagurka was affiliated with Carnegie Mellon University at the time of publication.