Document Type
Article
Publication Date
2022
Publisher
Springer
Source Publication
Metallography, Microstructure, and Analysis
Source ISSN
2192-9262
Original Item ID
DOI: 10.1007/s13632-021-00811-0
Abstract
Excellent weldability and high temperature stability make Inconel 718 (IN718) one of the most popular alloys to be produced by additive manufacturing. In this study, we investigated the effects of laser powder bed fusion (LPBF) parameters on the microstructure and relative density of IN718. The samples were fabricated with independently varied laser power (125–350 W), laser scan speed (200–2200 mm/s), and laser scan rotation (0°–90°). Archimedes’ method, optical microscopy, and scanning electron microscopy were employed to assess the influence of LPBF parameters on the relative density and microstructure. Optimal processing windows were identified for a wide range of processing parameters, and relative density greater than 99.5% was achieved using volumetric energy density between 50 and 100 J/mm3. Microstructural features including melt pool geometry, lack of fusion defect, keyhole porosity, and sub-grain cellular microstructure were examined and quantified to correlate to LPBF parameters. A simple empirical model was postulated to relate relative sample density and LPBF volumetric energy density. Melt pool dimensions were quantitatively measured and compared to estimations based on Rosenthal solution, which yielded a good agreement with the width, but underestimated the depth, particularly at high energy input, due to lack of consideration for keyhole mode. In addition, the sub-grain cellular-dendritic microstructure in the as-built samples was observed to decrease with increasing laser scan speed. Quantification of the sub-micron cellular-dendritic microstructure yielded estimated cooling rate in the order of 105–107 K/s.
Recommended Citation
Huynh, Thinh; Mehta, Abhishek; Graydon, Kevin; Woo, Jeongmin; Park, Sharon; Hyer, Holden; Zhou, Le; Imholte, D. Devin; Woolstenhulme, Nicolas E.; Wachs, Daniel M.; and Sohn, Yongho, "Microstructural Development in Inconel 718 Nickel-Based Superalloy Additively Manufactured by Laser Powder Bed Fusion" (2022). Mechanical Engineering Faculty Research and Publications. 311.
https://epublications.marquette.edu/mechengin_fac/311
Comments
Accepted version. Metallography, Microstructure, and Analysis, Vol. 11 (2022): 11-107. DOI. © 2022 Springer. Used with permission.