Document Type
Article
Language
eng
Format of Original
14 p.
Publication Date
2013
Publisher
Wiley
Source Publication
Stat
Source ISSN
2049-1573
Original Item ID
doi: 10.1002/sta4.34
Abstract
It is well known that Gaussian modelling of functional magnetic resonance imaging (fMRI) magnitude time-course data, which are truly Rice distributed, constitutes an approximation, especially at low signal-to-noise ratios (SNRs). Based on this fact, previous work has argued that Rice-based activation tests show superior performance over their Gaussian-based counterparts at low SNRs and should be preferred in spite of the attendant additional computational and estimation burden. Here, we revisit these past studies and, after identifying and removing their underlying limiting assumptions and approximations, provide a more comprehensive comparison. Our experimental evaluations using Receiver Operating Characteristic (ROC) curve methodology show that tests derived using Ricean modelling are substantially superior over the Gaussian-based activation tests only for SNRs below 0.6, that is, SNR values far lower than those encountered in fMRI as currently practiced.
Recommended Citation
Adrian, Daniel W.; Maitra, Ranjan; and Rowe, Daniel B., "Ricean over Gaussian Modelling in Magnitude fMRI Analysis—Added Complexity with Negligible Practical Benefits" (2013). Mathematics, Statistics and Computer Science Faculty Research and Publications. 206.
https://epublications.marquette.edu/mscs_fac/206
ADA Accessible Version
Comments
Accepted version. Stat, Vol. 2, No. 1 (2013): 303-316. DOI. © 2013 Wiley. Used with permission.