Document Type
Article
Language
eng
Format of Original
18 p.
Publication Date
12-2013
Publisher
Atlantis Press
Source Publication
Journal of Statistical Theory and Applications
Source ISSN
1538-7887
Original Item ID
doi: 10.2991/jsta.2013.12.4.2
Abstract
We introduce a log-linear regression model based on the beta generalized half-normal distribution (Pescim et al., 2010). We formulate and develop a log-linear model using a new distribution so-called the log-beta generalized half normal distribution. We derive expansions for the cumulative distribution and density functions which do not depend on complicated functions. We obtain formal expressions for the moments and moment generating function. We characterize the proposed distribution using a simple relationship between two truncated moments. An advantage of the new distribution is that it includes as special sub-models classical distributions reported in the lifetime literature. We also show that the new regression model can be applied to censored data since it represents a parametric family of models that includes as special cases several widely-known regression models. It therefore can be used more effectively in the analysis of survival data. We investigate the maximum likelihood estimates of the model parameters by considering censored data. We demonstrate that our extended regression model is very useful to the analysis of real data and may give more realistic fits than other special regression models.
Recommended Citation
Pescim, Rodrigo R.; Ortega, Edwin M. M.; Cordeiro, Gauss M.; Demtrio, Clarice G. B.; and Hamedani, Gholamhossein, "The Log-Beta Generalized Half-Normal Regression Model" (2013). Mathematics, Statistics and Computer Science Faculty Research and Publications. 251.
https://epublications.marquette.edu/mscs_fac/251
Comments
Published version. Journal of Statistical Theory and Applications, Vol. 12, No. 4 (December 2013): 330-347. DOI. © 2013 Atlantis Press. Used with permission.