Document Type
Article
Language
eng
Publication Date
5-2012
Publisher
American Physiological Society
Source Publication
Physiological Genomics
Source ISSN
1094-8341
Original Item ID
DOI: 10.1152/physiolgenomics.00013.2012
Abstract
The clinical significance of copy number variants (CNVs) in congenital heart disease (CHD) continues to be a challenge. Although CNVs including genes can confer disease risk, relationships between gene dosage and phenotype are still being defined. Our goal was to perform a quantitative analysis of CNVs involving 100 well-defined CHD risk genes identified through previously published human association studies in subjects with anatomically defined cardiac malformations. A novel analytical approach permitting CNV gene frequency “spectra” to be computed over prespecified regions to determine phenotype-gene dosage relationships was employed. CNVs in subjects with CHD (n = 945), subphenotyped into 40 groups and verified in accordance with the European Paediatric Cardiac Code, were compared with two control groups, a disease-free cohort (n = 2,026) and a population with coronary artery disease (n = 880). Gains (≥200 kb) and losses (≥100 kb) were determined over 100 CHD risk genes and compared using a Barnard exact test. Six subphenotypes showed significant enrichment (P ≤ 0.05), including aortic stenosis (valvar), atrioventricular canal (partial), atrioventricular septal defect with tetralogy of Fallot, subaortic stenosis, tetralogy of Fallot, and truncus arteriosus. Furthermore, CNV gene frequency spectra were enriched (P ≤ 0.05) for losses at: FKBP6, ELN, GTF2IRD1, GATA4, CRKL, TBX1, ATRX, GPC3, BCOR, ZIC3, FLNA and MID1; and gains at: PRKAB2, FMO5, CHD1L, BCL9, ACP6, GJA5, HRAS, GATA6 and RUNX1. Of CHD subjects, 14% had causal chromosomal abnormalities, and 4.3% had likely causal (significantly enriched), large, rare CNVs. CNV frequency spectra combined with precision phenotyping may lead to increased molecular understanding of etiologic pathways.
Recommended Citation
Tomita-Mitchell, Aoy; Mahnke, Donna K.; Struble, Craig; Tuffnell, Maureen E.; Stamm, Karl D.; Hidestrand, Mats; Harris, Susan; Goetsch, Mary A.; Simpson, Pippa; Bick, David P.; Broeckel, Ulrich; Pelech, Andrew N.; Tweddell, James S.; and Mitchell, Michael, "Human gene copy number spectra analysis in congenital heart malformations" (2012). Mathematics, Statistics and Computer Science Faculty Research and Publications. 272.
https://epublications.marquette.edu/mscs_fac/272
Comments
Accepted version. Physiological Genomics, Vol. 44, No. 9 (May 2012): 518-541. DOI. © 2012 The American Physiological Society. Used with permission.