Flow and Pressure Distributions in Vascular Networks Consisting of Distensible Vessels
Document Type
Article
Language
eng
Format of Original
12 p.
Publication Date
6-2003
Publisher
American Physiological Society
Source Publication
American Journal of Physiology: Heart and Circulatory Physiology
Source ISSN
1522-1539
Original Item ID
doi: 10.1152/ajpheart.00762.2002
Abstract
We examine the influence of vessel distensibility on the fraction of the total network flow passing through each vessel of a model vascular network. An exact computational methodology is developed yielding an analytic proof. For a class of structurally heterogeneous asymmetric vascular networks, if all the individual vessels share a common distensibility relation when the total network flow is changed, this methodology proves that each vessel will continue to receive the same fraction of the total network flow. This constant flow partitioning occurs despite a redistribution of pressures, which may result in a decrease in the diameter of one and an increase in the diameter of the other of two vessels having a common diameter at a common pressure. This theoretical observation, taken along with published experimental observations on pulmonary vessel distensibilities, suggests that vessel diameter-independent distensibility in the pulmonary vasculature may be an evolutionary adaptation for preserving the spatial distribution of pulmonary blood flow in the face of large variations in cardiac output.
Recommended Citation
Krenz, Gary S. and Dawson, Christopher A., "Flow and Pressure Distributions in Vascular Networks Consisting of Distensible Vessels" (2003). Mathematics, Statistics and Computer Science Faculty Research and Publications. 31.
https://epublications.marquette.edu/mscs_fac/31
Comments
American Journal of Physiology: Heart and Circulatory Physiology, Volume 284, No. 6, pp H2192-H2203 (June, 2003). Permalink.