The Congruence Lattice of a Regular Semigroup
Document Type
Article
Language
eng
Publication Date
8-1988
Publisher
Elsevier
Source Publication
Journal of Pure and Applied Algebra
Source ISSN
0022-4049
Abstract
Let S be a regular semigroup and ConS the congruence lattice of S. If C" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">C is an isomorphism class of semigroups and ϱϵConS, then we say that ϱ is over C" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">C if the idempotent ϱ-class belong to C" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">C. On ConS we can introduce the relations U, V, Tl, Tr and T as follows: if ϱ, θ, ϵConS, then we say that ϱ and θ are U− [V−, Tl−, Tr−, T−] related if both ϱ/ϱ∩θ and θ/ϱ∩gqover completely simple semigroups [rectangular band, left groups, right groups, groups]. It is shown that U, V, Tl, Tr and T are complete congruences on ConS.Various other characterizations of these congruences on ConS are obtained. Some of the congruences are studied for completely regular semigroups, orthodox semigroups and bands of groups. Further, since for any regular semigroup S, V∩Tl∩Tr is the identity relation, we obtain a subdirect decomposition of ConS.
Recommended Citation
Pastijn, Francis and Petrich, Mario, "The Congruence Lattice of a Regular Semigroup" (1988). Mathematics, Statistics and Computer Science Faculty Research and Publications. 592.
https://epublications.marquette.edu/mscs_fac/592
Comments
Journal of Pure and Applied Algebra, Vol. 53, Nos. 1-2 (August 1988): 93-123. DOI.