Document Type

Article

Language

eng

Publication Date

7-2013

Publisher

Public Library of Science

Source Publication

PLoS One

Source ISSN

1932-6203

Original Item ID

doi: 10.1371/journal.pone.0066431

Abstract

Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03%) exposure caused stronger global gene expression changes in comparison with low dose (0.003%) exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA.

Comments

Published Version. PLoS One, Vol. 8, No. 7 (July 2013): e66431. DOI. © 2013 PLoS One. Used with permission.

Included in

Mathematics Commons

Share

COinS