Document Type

Article

Language

eng

Format of Original

6 p.

Publication Date

3-2015

Publisher

Elsevier

Source Publication

Physiology & Behavior

Source ISSN

0031-9384

Original Item ID

doi: 10.1016/j.physbeh.2014.12.045; Shelves: QP351 .P55 Memorial Periodicals

Abstract

Cancer patients frequently suffer from fatigue, a complex syndrome associated with tiredness and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, escalates during treatment, and can persist for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. We have previously shown that increased pro-inflammatory cytokine expression in the brain contributes to depressive- and fatigue-like behaviors in a mouse model of CRF. Inflammatory cytokines increase the activity of indoleamine 2,3-dioxygenase (IDO) and kynurenine 3-monooxygenase (KMO), which competitively reduce serotonin synthesis. Reduced serotonin availability in the brain and increased production of alternative neuroactive metabolites of tryptophan are thought to contribute to the development of depression and fatigue. The purpose of this study was to determine the effects of fluoxetine, a selective serotonin reuptake inhibitor (SSRI), on brain cytokines and behavioral measures of fatigue and depression in tumor-bearing mice. Here we show that tumor growth increased brain expression of pro-inflammatory cytokines and KMO. Treatment with fluoxetine had no effect on tumor growth, muscle wasting, fatigue behavior, or cytokine expression in the brain. Fluoxetine, however, reduced depressive-like behaviors in tumor bearing mice. In conclusion, our data confirm that increased brain expression of pro-inflammatory cytokines is associated with tumor-induced fatigue- and depressive-like behaviors. However, it is possible to separate the effects of tumor growth on mood and fatigue-like behaviors using SSRIs such as fluoxetine.

Comments

Accepted version. Physiology & Behavior, Vol. 140 (March 2015): 230-235. DOI. © 2014 Elsevier Inc. Used in permission.

NOTICE: this is the author’s version of a work that was accepted for publication in Physiology & Behavior. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Physiology & Behavior, Vol. 140 (March 2015): 230-235. DOI.

Included in

Nursing Commons

Share

COinS