Document Type
Article
Language
eng
Publication Date
5-17-2019
Publisher
Routledge (Talyor & Francis Group)
Source Publication
Multivariate Behavioral Research
Source ISSN
0027-3171
Abstract
Ordinal missing data are common in measurement equivalence/invariance (ME/I) testing studies. However, there is a lack of guidance on the appropriate method to deal with ordinal missing data in ME/I testing. Five methods may be used to deal with ordinal missing data in ME/I testing, including the continuous full information maximum likelihood estimation method (FIML), continuous robust FIML (rFIML), FIML with probit links (pFIML), FIML with logit links (lFIML), and mean and variance adjusted weight least squared estimation method combined with pairwise deletion (WLSMV_PD). The current study evaluates the relative performance of these methods in producing valid chi-square difference tests (Δχ2) and accurate parameter estimates. The result suggests that all methods except for WLSMV_PD can reasonably control the type I error rates of (Δχ2) tests and maintain sufficient power to detect noninvariance in most conditions. Only pFIML and lFIML yield accurate factor loading estimates and standard errors across all the conditions. Recommendations are provided to researchers based on the results.
Recommended Citation
Chen, Po-Yi; Wu, Wei; Garnier-Villarreal, Mauricio; Kite, Benjamin Arthur; and Jia, Fan, "Testing Measurement Invariance with Ordinal Missing Data: A Comparison of Estimators and Missing Data Techniques" (2019). College of Nursing Faculty Research and Publications. 621.
https://epublications.marquette.edu/nursing_fac/621
Comments
Accepted version. Multivariate Behavioral Research, Vol. 55, No. 1 (May 2019):87-101. DOI. © 2019 Routledge (Taylor & Francis Group). Used with permission.