Document Type
Article
Language
eng
Publication Date
2017
Publisher
Oxford University Press
Source Publication
The British Journal for the Philosophy of Science
Source ISSN
0007-0882
Abstract
Analyses of singular (token-level) causation often make use of the idea that a cause increases the probability of its effect. Of particular salience in such accounts are the values of the probability function of the effect, conditional on the presence and absence of the putative cause, analysed around the times of the events in question: causes are characterized by the effect’s probability function being greater when conditionalized upon them. Put this way, it becomes clearer that the ‘behaviour’ (continuity) of probability functions in small intervals about the times in question ought to be of concern. In this article, I make an extended case that causal theorists employing the ‘probability raising’ idea should pay attention to the continuity question. Specifically, if the probability functions are ‘jumping about’ in ways typical of discontinuous functions, then the stability of the relevant probability increase is called into question. The rub, however, is that sweeping requirements for either continuity or discontinuity are problematic and, as I argue, this constitutes a ‘continuity bind’. Hence more subtle considerations and constraints are needed, two of which I consider: (1) utilizing discontinuous first derivatives of continuous probability functions, and (2) abandoning point probability for imprecise (interval) probability.
Recommended Citation
Peressini, Anthony F., "Causation, Probability, and the Continuity Bind" (2017). Philosophy Faculty Research and Publications. 648.
https://epublications.marquette.edu/phil_fac/648
Comments
Accepted version. The British Journal for the Philosophy of Science (2017). DOI. © 2017 Oxford University Press. Used with permission.