Date of Award
Fall 1989
Document Type
Thesis - Restricted
Degree Name
Master of Science (MS)
Department
Mathematics, Statistics and Computer Science
First Advisor
Barnard, Mark
Second Advisor
Corliss, George F.
Third Advisor
Feng, Xin
Abstract
This thesis describes, experiments in developing artificial neural networks, using a feedforward architecture and the backpropagation learning algorithm for classifying acoustic signals from three appliances: a washer, a dryer, and a furnace. The artificial neural network was trained to give the on/off status of these three appliances based on amplitudes of acoustic frequencies. Tests were performed on the network which varied the number of hidden units, learning rates, tolerances, and the number of training spectra. Two of the best artificial neural networks were compared to three classical pattern classification techniques: Euclidean distance, direction cosines, and the Tanimoto similarity measure. The performance of the network was also compared to that of human subjects visually classifying the spectra.
Recommended Citation
Miller, Russell C., "Identification of Acoustic Signals Using Artificial Neural Networks" (1989). Master's Theses (1922-2009) Access restricted to Marquette Campus. 2138.
https://epublications.marquette.edu/theses/2138