Date of Award
Fall 1993
Document Type
Thesis - Restricted
Degree Name
Master of Science (MS)
Department
Electrical and Computer Engineering
First Advisor
Feng, Xin
Second Advisor
Belfore, Lee A.
Third Advisor
Hock, Jeffrey L.
Abstract
This thesis presents a new approach for analyzing the solution performance of Genetic Algorithms (GAs). An adaptive filtering algorithm is combined with a predicting algorithm and memory data from previous GA iterations to estimate the GA's "optimal" solution. By normalizing all past iteration points with this optimal prediction, a fuzzy performance measure of the GA's current iteration value is obtained. If the current GA iteration value is above a certain user-defined acceptance level, iteration is stopped and the GA calculates a reliability estimation of the found solution. In summary, the GA analyzes and stops itself when a user-approved level of solution is achieved, which is quite different from the way GAs are conventionally implemented. This new method provides a unique stop criterion for the GA that is based on the dynamic nature of the GA and its past and current performance. Results indicate this new approach is preferable to the traditional GA iteration approach, in terms of cost/performance and in shortening the amount of time the GA searches for acceptable solutions.
Recommended Citation
Meyer, Lee D., "An Intelligent Fuzzy Stop Criterion Using Performance Estimation for Genetic Algorithms" (1993). Master's Theses (1922-2009) Access restricted to Marquette Campus. 4728.
https://epublications.marquette.edu/theses/4728