Date of Award
Fall 2013
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Electrical and Computer Engineering
First Advisor
Demerdash, Nabeel A. O.
Second Advisor
Yaz, Edwin E.
Third Advisor
Ionel, Dan
Abstract
This thesis contains a comprehensive analysis of experimental data collected from a case-study interior permanent-magnet electric machine experiencing winding short-circuit faults of varying severity. The experimental data collected from the faulted machine is from both motoring operation energized by a PWM sensorless ac drive as well as generating operation driven by the test bed dynamometer with a resistive winding load. For both modes of operation a complete set of three-phase voltage and current signals was recorded and analyzed. The three fault diagnosis techniques applied and compared regarding their ability to diagnose and prognosticate a winding fault in an interior permanent-magnet machine are motor current spectrum analysis (MCSA), negative sequence components analysis utilizing a symmetrical components transformation, and the space-vector pendulous oscillation method. The applicability of these diagnosis techniques to this case-study experimental interior permanent- magnet machine demonstrate that motor current spectrum analysis is inconclusive in diagnosing a winding fault when the machine is operated as a motor, but useful for diagnosing a winding fault when the machine is operated as a generator. Negative sequence components analysis successfully diagnoses the winding fault in both the motor operation and the generator operation cases. Finally, the space-vector pendulous oscillation method results are inconclusive for both the motor operation and the generator operation test cases.