Date of Award

Spring 2014

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Biomedical Engineering

First Advisor

Harris, Gerald F.

Second Advisor

Riedel, Susan A.

Third Advisor

Krzak, Joseph J.

Abstract

Children with hemiplegic cerebral palsy experience reduced motor performance in the affected upper extremity and are typically evaluated based on degree of functional impairment using activity-based assessments such as the Shriners Hospitals for Children Upper Extremity Evaluation (SHUEE), a validated clinical measure, to describe performance prior to and following rehabilitative or surgical interventions. Evaluations rely on subjective therapist scoring techniques and lack sensitivity to detect change. Objective clinical motion analysis systems are an available but time-consuming and cost-intensive alternative, requiring uncomfortable application of markers to the patient. There is currently no available markerless, low-cost system that quantitatively assesses upper extremity kinematics to improve sensitivity of evaluation during standardized task performance. A motion analysis system was developed, using Microsoft Kinect hardware to track motion during broad arm and subtle hand and finger movements. Algorithms detected and recorded skeletal position and calculated angular kinematics. Lab-developed articulating hand model and elbow fixation devices were used to evaluate accuracy, intra-trial, and inter-trial reliability of the Kinect platform. Results of technical evaluation indicate reasonably accurate detection and differentiation between hand and arm positions. Twelve typically-developing adolescent subjects were tested to characterize and evaluate performance scores obtained from the SHUEE and Kinect motion analysis system. Feasibility of the platform was determined in terms of kinematics and as an enhancement of quantitative kinematic reporting to the SHUEE, and a population mean of typically developing subject kinematics obtained for future development of performance scoring algorithms. The system was observed to be easily operable and clinically effective in subject testing. The Kinect motion analysis platform developed to quantify upper extremity motion during standardized tasks is a low-cost, portable, accurate, and reliable system in kinematic reporting, and has demonstrated quality of results in both technical evaluation of the system and a study of its applicability to standardized task-based evaluation, but has hardware and software limitations which will be resolved in future improvements of the system. The SHUEE benefits from improved quantitative data, and the Kinect system provides enhanced sensitivity in clinical upper extremity analysis for children with hemiplegic cerebral palsy.

COinS