"Biochemical Analysis of Dual T-Loop RNA Motifs that Perform Shape Reco" by John Aparicio Aguirre

Date of Award

Spring 2021

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Chemistry

First Advisor

Reiter, Nicholas

Second Advisor

Clark, Joseph R.

Third Advisor

Yi, Chae

Abstract

T-loops are highly abundant, structurally conserved five nucleotide motifs that facilitate long range intra- and intermolecular interactions and function to stabilize the tertiary fold of RNA. Interlocked or dual T-loop motifs provide additional thermodynamic stability and perform long-range docking of other RNA molecules. Dual T-loop RNA structures are present within the multi-turnover ribonuclease P-based ribozyme, the ribosome, and the bacterial tRNA-sensing riboswitch genetic element. In all three systems, a dual T-loop structure recognizes TYC/D-loop region of tRNA. Interestingly, sequence conservation at specific positions in the T-loops suggest a conserved interlocked RNA architecture. While X-ray crystallography provides insight into the putative hydrophobic stacking interactions, little or no information exists regarding hydrogen bonding or the conformational flexibility of the dual T-loop motifs. Through extensive NMR experiments, we examine the pre-assembly of the dual T-loop motif and define the hydrophobic stacking and hydrogen bonding environment of the secondary structural elements of a minimal construct containing the dual T-loop motif in a bacterial Bacillus subtilis glyQS T-box riboswitch. To better understand the structural diversity and functional roles of interlocked T-loop RNA motifs, the thermodynamic parameters and recognition properties of the dual-T loop RNA – tRNA interaction will be determined using a combined UV- melt analysis and isothermal titration calorimetry (ITC) approach. Results from these experiments suggest weak binding of the truncated constructs with a dissociation constant of 2.00±0.47 µM. In addition, preliminary data on the thermodynamic stability of con- structs has been obtained. RNA structural motifs, such as the dual T-loop motif, play an important role in the gene regulation and understanding the recognition patterns could lead to potential application in pharmaceuticals.

Included in

Chemistry Commons

COinS