Date of Award

Spring 2024

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Mechanical Engineering

First Advisor

Lobat Tayebi

Abstract

This thesis is dedicated to a detailed study of changes in the properties of Gelatin-Elastin-Hyaluronate (GEH) tissue engineering scaffold resulting from changes in preparation parameters. More specifically, utilizing a combination of foaming and freeze-drying techniques, this research investigates the effects of different parameters, including agitation speed, duration time, and chilling temperature on the scaffold’s structural integrity, porosity, and mechanical properties. The methodology involves a carefully calibrated process in which the scaffold matrix is initially prepared by incorporating 8% gelatin, 2% elastin, and 0.5% hyaluronate (w/v) into a homogenous aqueous solution, followed by controlled agitation and subsequent freezing at designated temperatures. The freeze-drying stage solidifies the foam structure, creating a porous matrix essential for cell growth and nutrient delivery. The findings reveal that porosity and mechanical properties, such as compressive Young’s modulus, of scaffolds are significantly influenced by fabrication parameters, with higher agitation speeds and longer duration times leading to increased porosity and decreased modulus. Moreover, the degradation rates of the scaffolds processed at both −20 and −80°C were found to be comparable, indicating a similar level of preservation in physiological conditions. Morphological analyses, including laser microscopy and scanning electron microscopy (SEM), indicated optimal pore sizes (100–300 µm) that promote effective cell interaction and tissue regeneration, confirming the successful application of the freeze-drying and foaming methods in creating highly interconnected porous structures. Based on the findings, a decrease in chilling temperature correlates with a slight increase in pore size within the scaffold matrix. The methodical fabrication process developed in this study emphasizes the control of agitation speed and duration to modulate scaffold porosity, which is an essential characteristic for cellular infiltration and vascularization in tissue engineering. The research outcomes demonstrate that scaffold properties can be finely adjusted through the preparation process, offering the potential to match the structural needs of specific tissue engineering applications. The thesis contributes significant advancements in scaffold design, providing a robust framework for the development of tissue scaffolds with controlled porosity and improved mechanical properties. By understanding and harnessing the effects of fabrication parameters, this research offers a pathway to design scaffolds that more accurately replicate the extracellular matrix, promoting enhanced tissue repair and regeneration.

COinS