Document Type

Article

Language

eng

Format of Original

12 p.

Publication Date

3-2010

Publisher

Taylor & Francis

Source Publication

RNA Biology

Source ISSN

1547-6286

Abstract

The discovery of increasing numbers of genes with overlapping sequences highlights the problem of expression in the context of constraining regulatory elements from more than one gene. This study identifies regulatory sequences encompassed within two genes that overlap in an antisense orientation at their 3’ ends. The genes encode the α-thyroid hormone receptor gene (TRα or NR1A1) and Rev-erbα (NR1D1). In mammals TRα pre-mRNAs are alternatively spliced to yield mRNAs encoding functionally antagonistic proteins: TRα1, an authentic thyroid hormone receptor; and TRα2, a non-hormone-binding variant that acts as a repressor. TRα2-specific splicing requires two regulatory elements that overlap with Rev-erbα sequences. Functional mapping of these elements reveals minimal splicing enhancer elements that have evolved within the constraints of the overlapping Rev-erbα sequence. These results provide insight into the evolution of regulatory elements within the context of bidirectional coding sequences. They also demonstrate the ability of the genetic code to accommodate multiple layers of information within a given sequence, an important property of the code recently suggested on theoretical grounds.

Comments

Accepted version. RNA Biology, Vol. 7, No. 2 (March 2010): 179-190. DOI. © 2010 Taylor & Francis. Used with permission.

Included in

Biology Commons

Share

COinS