Document Type

Article

Language

eng

Format of Original

9 p.

Publication Date

4-2005

Publisher

American Society for Biochemistry and Molecular Biology

Source Publication

Journal of Biological Chemistry

Source ISSN

0021-9258

Abstract

Escherichia coli SecA uses ATP to drive the transport of proteins across cell membranes. Glutamate 210 in the “DEVD” Walker B motif of the SecA ATP-binding site has been proposed as the catalytic base for ATP hydrolysis (Hunt, J. F., Weinkauf, S., Henry, L., Fak, J. J., McNicholas, P., Oliver, D. B., and Deisenhofer, J. (2002) Science 297, 2018–2026). Consistent with this hypothesis, we find that mutation of glutamate 210 to aspartate results in a 90-fold reduction of the ATP hydrolysis rate compared with wild type SecA, 0.3 s–1versus 27 s–1, respectively. SecA-E210D also releases ADP at a slower rate compared with wild type SecA, suggesting that in addition to serving as the catalytic base, glutamate 210 might aid turnover as well. Our results contradict an earlier report that proposed aspartate 133 as the catalytic base (Sato, K., Mori, H., Yoshida, M., and Mizushima, S. (1996) J. Biol. Chem. 271, 17439–17444). Re-evaluation of the SecA-D133N mutant used in that study confirms its loss of ATPase and membrane translocation activities, but surprisingly, the analogous SecA-D133A mutant retains full activity, revealing that this residue does not play a key role in catalysis.

Comments

Published version. Journal of Biological Chemistry, Vol. 280, No. 15 (April 2005): 14611-14619. DOI. © 2005 The American Society for Biochemistry and Molecular Biology, Inc. Used with permission.

Edwin Antony was affiliated with Wesleyan University at time of publication.

Included in

Biology Commons

Share

COinS