Rhizobial Purine and Pyrimidine Auxotrophs: Nutrient Supplementation, Genetic Analysis, and the Symbiotic Requirement for the Novo Purine Biosynthesis

Document Type

Article

Language

eng

Publication Date

4-1988

Publisher

Springer

Source Publication

Archives of Microbiology

Source ISSN

0302-8933

Abstract

Previously described Rhizobium leguminosarum bv. phaseoli mutants elicit nodules on bean without infection thread formation. These mutants were shown to be purine or, in one case, pyrimidine auxotrophs. Each of the seven purine auxotrophs grew normally when supplied the penultimate precursor of inosine, 5-aminoimidazole-4-carboxamide riboside. Four seemed blocked early in the purine pathway, because they were also thiamine auxotrophs. Reversion analysis and genetic complementation using cloned wild-type DNA showed that in each mutant a single mutation was responsible for both the symbiotic defect and purine or pyrimidine auxotrophy. The mutations were mapped to five dispersed chromosomal locations. The previously reported weak Calcofluor staining of these mutants on minimal agar appeared to be caused by partial growth on contaminating nutrients in the agar, rather than deficient exopolysaccharide production. Nodulation by the mutants was not enhanced by supplying purine or pyrimidine compounds exogenously. Furthermore, with or without added purine, the purine auxotrophs grew in the root environment as well as the wild type. However, nodulation by the purine auxotrophs was enhanced greatly in the presence of 5-aminoimidazole-4-carboxamide riboside. The results suggest that undiminished metabolic flow through de novo purine biosynthesis, or a particular intermediate in the pathway, is essential in early symbiotic interactions.

Comments

Archives of Microbiology, Vol. 149, No. 6 (April 1988): 499-506. DOI.

Share

COinS