Document Type

Article

Language

eng

Publication Date

7-2019

Publisher

Oxford University Press

Source Publication

Integrative and Comparative Biology

Source ISSN

0003-1569

Abstract

Corneous proteins are an important component of the tetrapod integument. Duplication and diversification of keratins and associated proteins are linked with the origin of most novel integumentary structures like mammalian hair, avian feathers, and scutes covering turtle shells. Accordingly, the loss of integumentary structures often coincides with the loss of genes encoding keratin and associated proteins. For example, many hair keratins in dolphins and whales have become pseudogenes. The adhesive setae of geckos and anoles are composed of both intermediate filament keratins (IF-keratins, formerly known as alpha-keratins) and corneous beta‐proteins (CBPs, formerly known as beta-keratins) and recent whole genome assemblies of two gecko species and an anole uncovered duplications in seta-specific CBPs in each of these lineages. While anoles evolved adhesive toepads just once, there are two competing hypotheses about the origin(s) of digital adhesion in geckos involving either a single origin or multiple origins. Using data from three published gecko genomes, I examine CBP gene evolution in geckos and find support for a hypothesis where CBP gene duplications are associated with the repeated evolution of digital adhesion. Although these results are preliminary, I discuss how additional gecko genome assemblies, combined with phylogenies of keratin and associated protein genes and gene duplication models, can provide rigorous tests of several hypotheses related to gecko CBP evolution. This includes a taxon sampling strategy for sequencing and assembly of gecko genomes that could help resolve competing hypotheses surrounding the origin(s) of digital adhesion.

Comments

Accepted version. Integrative and Comparative Biology, Vol. 59, No. 1 (July 2019): 193-202. DOI. © 2019 Oxford University Press. Used with permission.

gamble_13527acc.docx (671 kB)
ADA Accessible Version

Included in

Biology Commons

Share

COinS