Document Type
Article
Publication Date
1-1-2022
Publisher
American Society for Cell Biology
Source Publication
Molecular Biology of the Cell
Source ISSN
1059-1524
Original Item ID
DOI: 10.1091/mbc.E21-07-0370
Abstract
We demonstrate here that mitoribosomal protein synthesis, responsible for the synthesis of oxidative phosphorylation (OXPHOS) subunits encoded by the mitochondrial genome, occurs at high levels during glycolysis fermentation and in a manner uncoupled from OXPHOS complex assembly regulation. Furthermore, we provide evidence that the mitospecific domain of Mrp7 (bL27), a mitoribosomal component, is required to maintain mitochondrial protein synthesis during fermentation but is not required under respiration growth conditions. Maintaining mitotranslation under high-glucose-fermentation conditions also involves Mam33 (p32/gC1qR homologue), a binding partner of Mrp7’s mitospecific domain, and together they confer a competitive advantage for a cell’s ability to adapt to respiration-based metabolism when glucose becomes limiting. Furthermore, our findings support that the mitoribosome, and specifically the central protuberance region, may be differentially regulated and/or assembled, under the different metabolic conditions of fermentation and respiration. On the basis of our findings, we propose that the purpose of mitotranslation is not limited to the assembly of OXPHOS complexes, but also plays a role in mitochondrial signaling critical for switching cellular metabolism from a glycolysis- to a respiration-based state.
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.
Recommended Citation
Anderson, Jessica M.; Box, Jodie M.; and Stuart, Rosemary A., "The Mitospecific Domain of Mrp7 (bL27) Supports Mitochondrial Translation during Fermentation and is Required for Effective Adaptation to Respiration" (2022). Biological Sciences Faculty Research and Publications. 895.
https://epublications.marquette.edu/bio_fac/895
Comments
Published version. Molecular Biology of the Cell, Vol. 33, No. 1 (January 1, 2022). DOI. © 2022 Anderson et al. This article is distributed by the American Society for Cell Biology under license from the author(s). Used with permission.