Document Type

Article

Language

eng

Publication Date

2007

Publisher

American Chemical Society

Source Publication

The Journal of Organic Chemistry

Source ISSN

0022-3263

Abstract

The reaction between 2-pyrazolyl-4-X-anilines, H(pzAnX), (X = para-OMe (L1), Me (L2), H (L3), Cl (L4), CO2Et (L5), CF3 (L6), CN (L7)) and triphenylboron in boiling toluene affords the respective, highly emissive N,N‘-boron chelate complexes, BPh2(pzAnX) (X = para-OMe (1), Me (2), H (3), Cl (4), CO2Et (5), CF3 (6), CN (7)) in high yield. The structural, electrochemical, and photophysical properties of the new boron complexes can be fine-tuned by varying the electron-withdrawing or -donating power of the para-aniline substituent (delineated by the substituent's Hammett parameter). Those complexes with electron-withdrawing para-aniline substituents such as CO2Et (5), CF3 (6), and CN (7) have more planar chelate rings, more ‘quinoidal' disortion [sic] in the aniline rings, greater chemical stability, higher oxidation potentials, and more intense (φF = 0.81 for 7 in toluene), higher-energy (blue) fluorescent emission compared to those with electron-donating substituents. Thus, for 1 the oxidation potential is 0.53 V versus Ag/AgCl (compared to 1.12 V for 7), and the emission is tuned to the yellow-green but at an expense in terms of lower quantum yields (φF = 0.07 for 1 in toluene) and increased chemical reactivity. Density functional calculations (B3LYP/6-31G*) on PM3 energy-minimized structures of the ligands and boron complexes reproduced experimentally observed data and trends and provided further insight into the nature of the electronic transitions.

Comments

Accepted version. The Journal of Organic Chemistry, Vol. 72, No. 15 (2007): 5637-5646. DOI. © 2007 American Chemical Society. Used with permission.

Included in

Chemistry Commons

Share

COinS