Document Type

Article

Language

English

Publication Date

8-2016

Publisher

American Society of Civil Engineers (ASCE)

Source Publication

Journal of Structural Engineering

Source ISSN

0733-9445

Abstract

A framework is presented for incorporating probabilistic building performance limit states in the assessment of community resilience to earthquakes. The limit states are defined on the basis of their implications to postearthquake functionality and recovery. They include damage triggering inspection, occupiable damage with loss of functionality, unoccupiable damage, irreparable damage, and collapse. Fragility curves are developed linking earthquake ground motion intensity to the probability of exceedance for each of the limit states. A characteristic recovery path is defined for each limit state on the basis of discrete functioning states, the time spent within each state, and the level of functionality associated with each state. A building recovery function is computed accounting for the uncertainty in the occurrence of each recovery path and its associated limit state. The outcome is a probabilistic assessment of recovery of functionality at the building level for a given ground motion intensity. The effects of externalities and other socioeconomic factors on building-level recovery and ways to incorporate these in the framework are discussed. A case study is presented to demonstrate the application of the proposed framework to model the postearthquake recovery of the shelter-in-place housing capacity of an inventory of residential buildings. This type of assessment can inform planning and policy decisions to manage the earthquake risk to residential housing capacity of communities.

Comments

Accepted version. Journal of Structural Engineering, Vol. 142, No. 8 (August 2016). DOI. © 2016, American Society of Civil Engineers. Used with permission.

Share

COinS