Document Type

Conference Proceeding

Language

eng

Format of Original

7 p.

Publication Date

5-12-2013

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Source Publication

2013 IEEE International Electric Machines & Drives Conference (IEMDC)

Source ISSN

978-1-4673-4974-1

Abstract

Information of rotor position and speed plays an crucial role in variable-speed wind energy conversion systems. Traditional sensors based position detection methods not only increase hardware complexity and system cost, but also face severe challenges on reliability caused by the disturbances from the varying weather and harsh operating conditions in wind energy generation sites. Thus, with the aim of eliminating position sensors and developing a reliable position self-sensing technique, this paper proposes a position self-sensing control method based on sliding mode observer for a 2 MW permanent magnet synchronous generator (PMSG) wind turbine system. In addition, a three-level neutral-point-clamped (NPC) back-to-back converter with space vector pulse width modulation (SVPWM) is developed for the full-scale power conversion, which has lower voltage stress on the switching devices and less harmonic distortion in the output voltage compared with those in traditional two-level power converters. Simulation analysis is carried out to verify the effectiveness of the proposed self-sensing method and the three-level SVPWM based back-to-back NPC converter. The simulation results soundly justified the feasibility of the proposed control scheme and power conversion strategy.

Comments

Accepted version. Published as part of the proceedings of the 2013 IEEE International Electric Machines & Drives Conference (IEMDC), 2013: 919-925. DOI. © 2013 The Institute of Electrical and Electronics Engineers. Used with permission.

demerdash_9198acc.docx (423 kB)
ADA Accessible Version

Share

COinS