Document Type
Article
Language
eng
Format of Original
10 p.
Publication Date
8-11-2015
Publisher
American Chemical Society
Source Publication
Biochemistry
Source ISSN
1520-4995
Abstract
Binding of the competitive inhibitor ʟ-captopril to the dapE-encoded N-succinyl-ʟ, ʟ-diaminopimelic acid desuccinylase from Neisseria meningitidis (NmDapE) was examined by kinetic, spectroscopic, and crystallographic methods. ʟ-Captopril, an angiotensin-converting enzyme (ACE) inhibitor, was previously shown to be a potent inhibitor of the DapE from Haemophilus influenzae (HiDapE) with an IC50 of 3.3 μM and a measured Ki of 1.8 μM and displayed a dose-responsive antibiotic activity toward Escherichia coli. ʟ-Captopril is also a competitive inhibitor of NmDapE with a Ki of 2.8 μM. To examine the nature of the interaction of ʟ-captopril with the dinuclear active site of DapE, we have obtained electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) data for the enzymatically hyperactive Co(II)-substituted forms of both HiDapE and NmDapE. EPR and MCD data indicate that the two Co(II) ions in DapE are antiferromagnetically coupled, yielding an S = 0 ground state, and suggest a thiolate bridge between the two metal ions. Verification of a thiolate-bridged dinuclear complex was obtained by determining the three-dimensional X-ray crystal structure of NmDapE in complex with ʟ-captopril at 1.8 Å resolution. Combination of these data provides new insights into binding of ʟ-captopril to the active site of DapE enzymes as well as important inhibitor–active site residue interaction’s. Such information is critical for the design of new, potent inhibitors of DapE enzymes.
Recommended Citation
Starus, Anna; Nocek, Boguslaw; Bennett, Brian; Larrabee, James A.; Shaw, Daniel L.; Sae-Lee, Wisath; Russo, Marie T.; Gillner, Danuta M.; Makowska-Grzyska, Magdalena; Joachimiak, Andzrej; and Holz, Richard C., "Inhibition of the dapE-Encoded N-Succinyl- ʟ, ʟ-diaminopimelic Acid Desuccinylase from Neisseria meningitidis by ʟ-Captopril" (2015). Physics Faculty Research and Publications. 115.
https://epublications.marquette.edu/physics_fac/115
Comments
Accepted version. Biochemistry, Vol. 54, No. 31 (August 11, 2015): 4384-4844. DOI. © 2015 American Chemical Society. Used with permission.