Document Type

Article

Language

eng

Format of Original

12 p.

Publication Date

4-1-2014

Publisher

American Physiological Society

Source Publication

Journal of Applied Physiology

Source ISSN

0021-8987

Original Item ID

doi: 10.1152/japplphysiol.01129.2013

Abstract

This study investigated mechanisms for the stressor-induced changes in muscle fatigability in men and women. Participants performed an isometric-fatiguing contraction at 20% maximal voluntary contraction (MVC) until failure with the elbow flexor muscles. Study one (n = 55; 29 women) involved two experimental sessions: 1) a high-stressor session that required a difficult mental-math task before and during a fatiguing contraction and 2) a control session with no mental math. For some participants (n = 28; 14 women), cortical stimulation was used to examine mechanisms that contributed to muscle fatigability during the high-stressor and control sessions. Study two (n = 23; nine women) determined the influence of a low stressor, i.e., a simple mental-math task, on muscle fatigability. In study one, the time-to-task failure was less for the high-stressor session than control (P < 0.05) for women (19.4%) and men (9.5%): the sex difference response disappeared when covaried for initial strength (MVC). MVC force, voluntary activation, and peak-twitch amplitude decreased similarly for the control and high-stressor sessions (P < 0.05). In study two, the time-to-task failure of men or women was not influenced by the low stressor (P > 0.05). The greater fatigability, when exposed to a high stressor during a low-force task, was not exclusive to women but involved a strength-related mechanism in both weaker men and women that accelerated declines in voluntary activation and slowing of contractile properties.

Comments

Accepted version. Journal of Applied Physiology, Vol. 116, No. 7 (April 1, 2014): 767-778. DOI. © 2014 The American Physiological Society. Used with permission.

Share

COinS