Date of Award
Summer 2023
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Mechanical Engineering
First Advisor
Zhou, Le
Second Advisor
Fournelle, Raymond
Third Advisor
Moore, John
Abstract
Currently, the only commercially available aluminum alloy for additive manufacturing (AM) is AlSi10Mg, which is not suitable for high temperature applications. Al-Ce based alloys have been shown to be highly printable, cost-efficient alloys. Compared to cast Al-Ce alloys, the eutectic features are refined (<1μm), which give AM Al-10Ce favorable strength and ductility at room temperature. The low diffusivity and solubility of cerium in aluminum improve the retention of mechanical properties at high temperatures. In order to quantify the effect of cerium on the thermal stability of AM aluminum and show its suitability for high-temperature applications, Al-10Ce was creep tested between 60-77% of its absolute melting temperature. The creep performance of AM Al-10Ce was favorable compared to that of cast binary Al-Ce and AM AlSi10Mg and was comparable to that of cast ternary Al-Ce alloys. The stress exponent, n, was approximately 1 in the low stress regime and 5-7 in the high stress regime. The activation energy was 231kJ/mol. In comparison, both cast binary Al-Ce and AM AlSi10Mg have higher stress exponents and lower activation energies, showing AM Al-10Ce to be more creep resistant. After creep testing, slight grain coarsening was observed, while grain orientation remained unchanged. The melt pool boundaries (MPBs) faded in appearance after creep testing, and the number of columnar grains decreased.